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ABSTRACT
This paper presents an empirical cost-benefit analysis of an
algorithm called Distribution Estimation Using MRF with
direct sampling (DEUMd). DEUMd belongs to the family
of Estimation of Distribution Algorithm (EDA). Particu-
larly it is a univariate EDA. DEUMd uses a computation-
ally more expensive model to estimate the probability dis-
tribution than other univariate EDAs. We investigate the
performance of DEUMd in a range of optimization problem.
Our experiments shows a better performance (in terms of
the number of fitness evaluation needed by the algorithm to
find a solution and the quality of the solution) of DEUMd on
most of the problems analysed in this paper in comparison
to that of other univariate EDAs. We conclude that use of a
Markov Network in a univariate EDA can be of net benefit
in defined set of circumstances.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search
; G.3 [Probability and statistics]: Probabilistic algo-

rithms, Stochastic processes

General Terms
Algorithms, Performance, Theory

Keywords
Estimation of Distribution Algorithms, Evolutionary Com-
putation, Probabilistic Modelling

1. INTRODUCTION
Estimation of Distribution Algorithms (EDAs) [17] is a

well-established topic in the field of evolutionary algorithms.
EDAs are motivated by the idea of identifying and preserv-
ing important patterns or building blocks [6] and are able

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

to solve problems that are known to be hard for traditional
Genetic Algorithms (GA) [20]. An EDA maintains the se-
lection and variation concepts of evolution. However, it
replaces the crossover and mutation approach to variation
in a traditional GA by building and sampling a probabilistic
model of promising solutions. The processing of the building
blocks in an EDA is explicitly biased towards the significant
patterns identified by a probabilistic model. This contrasts
with the implicit processing of building blocks in a tradi-
tional GA. EDAs are classified as univariate, bivariate or
multivariate [21, 11] according to the type of interaction
between allele values that is allowed in the model of the
probability distribution.
For the purpose of this paper, we will concentrate on uni-

variate EDAs. Particularly, on an algorithm, described in
[23], which we call Distribution Estimation Using Markov
Random Field with direct sampling (DEUMd). DEUMd is
a modification to the algorithm called Distribution Estima-
tion Using MRF (DEUM) proposed in [24]. DEUMd uses
a Markov Random Field (MRF) model [3, 12] to estimate
the probability distribution. Markov Random Field mod-
els are a class of Undirected Graphical Models (also known
as Markov Networks) [12, 18]. A previously proposed EDA,
known as Factorization of the Distribution Algorithm (FDA)
[13] also uses an Undirected Graphical Model to estimate
the probability distribution. However, FDA is distinct from
DEUMd in significant ways. Particularly, in its use of a Tri-
angular model of the distribution and it’s restriction to a
certain class of fitness function. And also, FDA is a multi-
variate EDA. (see [15, 13] for more details on FDA).
In most univariate EDAs, the probability distribution is

estimated using the marginal frequency of particular allele
values in a selected subset of the population (e.g., see [17],
[21]). In particular, the univariate marginal distribution al-
gorithm (UMDA) proposed in [17] uses marginal frequen-
cies that are sampled to generate successive populations.
In DEUMd, these marginal frequencies are replaced with a
MRF model also built from a selected subset of the popula-
tion. This model gives a maximum likelihood estimation of
the optimal solution for the selected set, and it is sampled
to generate a successive population. The MRF approach to
the estimation of distribution is computationally more ex-
pensive than the marginal frequency approach. However,
there could be a trade-off between computational cost and
the quality of results.
The purpose of this paper is to empirically explore the cost

and benefit of applying the MRF models used by DEUMd
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over the marginal probability model used by other univari-
ate EDAs. We present an analysis of the performance of
DEUMd on a range of optimization problems and compare
this with the performance of other univariate EDAs. We
also find it instructive to compare the performance of GA
on the same problems.
The rest of the paper is structured as follows. Section

2 gives some background on Univariate EDAs. Section 3
describes the probabilistic model used by DEUMd and its
workflow. Section 4 presents experimental results on the
performance of DEUMd on range of different optimization
problems. We analyse our experimental findings in section
5 and present wider conclusions in section 6.

2. BACKGROUND
An EDA regards a solution (chromosome) as a set of ran-

dom variables (the alleles), each taking a particular value
from a set of possible values. In particular, we represent a so-
lution (an instance of the random field) as x = {x1, x2, . . . , xn}
where each xi is the value taken by the i-th random variable.
Here, we consider problems where solutions are encoded as
bit-string chromosomes, and so n is the chromosome length,
and the xi represent the allele values in the obvious way (so
each xi is either 0 or 1).
Univariate EDAs do not consider dependencies between

variables, i.e., they only model building blocks of order one.
In this case, the joint probability distribution, p(x), is simply
the product of the univariate marginal probabilities of all
variables in a chromosome x:

p(x) =

n∏
i=1

p(xi) (1)

where, p(xi) is the marginal probability of the i-th variable
having the value xi.
As in a traditional GA, an EDA begins by generating an

initial population of M solutions. N promising solutions are
then selected according to chosen selection criteria (usually
fittest) for some N ≤ M . An estimation of the probability
distribution of allele values is then made from the selected
set of solutions [17]. Offspring are generated by sampling the
probability distribution to replace the current population
with a new one. This process continues until a termination
criterion is satisfied.
Population Based Incremental Learning (PBIL) [1], the

Univariate Marginal Distribution Algorithm (UMDA) [17],
and the Compact Genetic Algorithm (cGA) [8] all use a
univariate model of the probability distribution.

3. DISTRIBUTION ESTIMATION USING MRF
WITH DIRECT SAMPLING

In [3], MRF theory was used to provide a formulation of
the joint probability distribution that relates solution fit-
ness, f(x), to an energy function, U(x), calculated from the
values of the solution variables. To be precise:

p(x) =
f(x)∑
y f(y)

≡ e−U(x)/T∑
y e−U(y)/T

(2)

from which, an equation for each solution x can be derived
(see [3] for detail information):

− ln(f(x)) = U(x)/T (3)

Here, f(x) is the fitness of an individual x, U(x) is an
energy function derived from allele values and T is a tem-
perature coefficient, which in [3] has a constant value of 1.
The summations are over all possible solutions y. U(x) gives
the full specification of the joint probability distribution, so
it can be regarded as a probabilistic model of the fitness
function. In particular, minimising U(x) is equivalent to
maximising f(x).
In general, the form of the energy function will involve

interactions between the variables xi. In [24], a Univariate
MRF model was used that assumes simple form of energy
function with no such interactions. To be precise,

U(x) = α1x1 + α2x2 + . . .+ αnxn (4)

Here, αi are called MRF parameters and completely deter-
mine the probability distribution. Each variable xi provides
a contribution αixi to overall fitness.
For mathematical reasons, {−1, 1} are used as the values

of xi in the model, rather than {0, 1}. This ensures arith-
metical symmetry between the possible allele values.
Each solution in a given population provides an equation

satisfying the model. Selecting N promising solutions from
a population therefore allows us to estimate the distribution
by solving the system of equations:

AαT = F (5)

Here, A is the N × n-dimensional matrix of allele val-
ues in the selected set, α is the vector of MRF parameters
α = (α1, α2, . . . , αn), and F is the N -dimensional vector
containing − ln(f(x)) of the selected set of solutions x. De-
pending on the relationship between N and n, the system
will be under-, over-, or precisely-specified. A standard fit-
ting algorithm can be used to give a maximum likelihood
estimation of the αi. The αi can then be used to provide an
estimate of the probability of the value of xi.
In [24], α is used to formulate an updating rule to update

a probability vector. The probability vector is then sampled
to generate a child population. Here, we use αi to directly
estimate the marginal probability p(xi).
Fixing the value of a particular allele xi divides the set Ω

of all chromosomes into two disjoint sets, which we denote
by A and B. More precisely, A = {x ∈ Ω : xi = 1} and
B = {x ∈ Ω : xi = −1}. We denote the probability that the
allele value in position i is equal to 1 by p(xi = 1). Clearly,
the probability that the allele value in position i is equal to
−1 is 1− p(xi = 1). Applying this to (2), we obtain:

p(xi = 1) =
∑
x∈A

p(x) =
∑
x∈A

e−U(x)/T

Z
(6)

Here, Z =
∑

y e−U(y)/T is a (very large) normalising con-

stant. Substituting for U(x) from (4), and noting that xi =
1 for all x ∈ A, we obtain:

p(xi = 1) = e−αi/T K

Z
(7)
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where K is a large constant representing the sum over all
chromosomes in A of contributions from alleles in positions
other than i.
Similarly, summing over B we obtain the probability that

the allele value in position i is equal to −1:

p(xi = −1) = 1− p(xi = 1) = eαi/T K

Z
(8)

Here, K is the same constant as in (7), because the chro-
mosomes in A and B agree pairwise at allele positions other
than i. Combining (7) and (8), the constants K and Z drop
out, and we get the following expression as an estimate of
the marginal probability for xi = 1:

p(xi = 1) =
1

1 + eβαi
(9)

where, β = 2/T .

Note that, as T → 0, the value of β increases, and the
value of p(xi = 1) tends to limit depending on the sign of
αi. If αi > 0, then p(xi = 1) → 0 as T → 0. Conversely,
if αi < 0, then p(xi = 1) → 1 as T → 0. If αi = 0, then
p(xi = 1) = 0.5 regardless of the value of T . Therefore, the
αi are indicators of whether the allele value at the position i
should be 1 or −1. This indication becomes stronger as the
temperature is cooled towards zero.
This forms the basis for our estimation of distribution

technique, which combines the univariate MRF model with a
cooling scheme. We reduce T , i.e., increase β, as the popula-
tion evolves, so the model becomes more exploitative rather
than explorative as the evolution progresses.

3.1 Workflow of DEUMd

DEUMd consists of a five step procedure as follows:
1. Generate an initial population, P , of size M with uniform
distribution.
2. Select the N fittest solutions from P , where N ≤ M .
3. Calculate the MRF parameters α = (α1, α2, . . . , αn) by
making a maximum likelihood estimation from the selected
solution.
4. Generate M new solutions using the following distribu-
tion:

p(x) =
n∏

i=1

p(xi)

where, p(xi = 1) = 1

1+eβαi
and p(xi = −1) = 1

1+e−βαi
.

Here, β is defined as β = gτ where, g is the number of
the current iteration and τ > 0 is a cooling rate parameter
chosen by the user.
5. Replace P by the new population, and go to Step 2 until
the termination criterion is satisfied.

DEUMd uses the singular value decomposition (SVD) [22,
7] technique to make the maximum likelihood estimation.
SVD proves to be the most stable technique, returning useful
estimations from systems of linear equations that are either
under- or over-specified [22].
As described earlier, β has a direct effect on the conver-

gence speed of DEUMd. As the number of iterations (g)
grows, the marginal probability (p(xi)) gradually cools to
either 0 or 1. However, depending upon the type of prob-
lem, different cooling rates may be required. In particular,

there is a trade-off between convergence speed of the algo-
rithm and the exploration of the search space. Therefore,
the cooling rate parameter, τ , has been introduced. τ gives
explicit control over the convergence speed of DEUMd. De-
creasing τ slows the cooling, resulting in better exploration
of the search space. However, it also slows the convergence
of the algorithm. Increasing τ , on the other hand, makes
the algorithm converge faster. However, the exploration of
the search space will be reduced.

4. EXPERIMENTAL RESULTS
The aim of our experiment is to investigate how effective

the model of the distribution used in DEUMd is in com-
parison to those used in other univariate EDAs. For this
purpose, a range of optimization problems from literature
has been chosen. Each of these problems has been used in
the literature to evaluate different EDAs (see [2, 10, 16, 19,
5]). Some problems are known to be better solved by EDAs
and some by GAs. We compare the performance of DEUMd

with two other well known univariate EDAs, 1. PBIL 2.
UMDA. We also compare the performance of DEUMd with
GA.
Each algorithm was executed for a fixed number of runs

and stopped if it matched one of the following three criteria.
1. the optimal solution is found. 2. population converged
3. maximum number of fitness evaluations performed.
For the problems where optimum fitness could be found,

the number of fitness evaluations taken by the algorithm to
find the optimum was taken as a measure for performance
evaluation. Run Length Distribution (RLD)[9] curves were
plotted to measure the performance. RLD shows, for each
algorithm, the cumulative percentage of successful runs that
terminated within a certain number of function evaluations.
For example, it can be seen in Figure 1 that, for DEUMd 80%
of the runs found optimum solution within 1600 function
evaluation in comparision to 2000, 2800 and 3700 of PBIL,
UMDA and GA respectively.
For the problems where the optimum was not known or

could not be found, the algorithms were evaluated by the
average quality/fitness of solution they could find and the
average number of fitness evaluations taken to find it [10, 5] .
This is shown as a table (eg. see Table 4 ) where the average
± Standard Deviation is shown in the first row for fitness
and in the second row for the number of fitness evaluation.
The following abbreviations are used hereafter in the pa-

per. They are, PS for population size M , SS for selection
size N , LR for learning rate, CR for cooling rate τ , CP for
crossover probability, MP for mutation probability and EL
for number of elitist chromosome to be transferred to the
child population. The parameters for each algorithm were
chosen empirically. For UMDA, PBIL and DEUMd, trun-
cation selection was used, i.e. the best N solutions were
selected. For GA, different selection methods were tried for
each of problem and the best performing method was cho-
sen.

4.1 Onemax Problem
The Onemax problem [17] is a simple linear problem de-

composable into building blocks of order one, and therefore
is an ideal problem for univariate EDAs. It has been shown
that UMDA works very well on this problem, even with a
very small selection size [17]. The Onemax Problem can be
defined as:
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Figure 1: RLD for OneMax

Fom(x) =

n∑
i=1

xi

The objective is to maximize the function Fom with xi ∈
{0, 1}. The global optimum is located at the point (1,1,.....,1).
We take the problem dimension to be 180 so the optimum
fitness is 180. Each algorithm was executed for total of 1000
runs. The parameter setups for each of the algorithm are
shown in Table 1:

Table 1: Parameter setup for OneMax

PS SS LR CR CP MP EL

GA 100 - - - 1 0.0025 -
UMDA 180 60 1 - - - -
PBIL 40 10 0.3 - - - -

DEUMd 40 10 - 4 - - -

For GA, the truncation selection and the uniform crossover
were used. The results in the form of RLD are shown in Fig-
ure 1.

4.2 Plateau problem
This problem was proposed in [14] and is used by [11]

to evaluate the performance of EDAs. The individuals of
this function consist of a n-dimensional vector, such that
n = m × 3 i.e. the genes are divided into groups of three.
The plateau function can be defined as:

Fp(x) =
m∑

i=1

g(x3i−2, x3i−1, x3i)

where,

g(x1, x2, x3) =




1 if x1 = 1 and x2 = 1 and x3 = 1

0 otherwise

The goal is to maximaise the function Fp. The global
optimum is located at the point (1,1,.....,1). We take the
problem dimension n to be 180 so the optimum fitness is 60.
Each of the algorithm was executed for 1000 runs and the
number of fitness evaluation taken to find the optimum was
recorded. The parameter setups are shown in Table 2:
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Figure 2: RLD for Plateau

Table 2: Parameter setup for Plateau

PS SS LR CR CP MP EL

GA 200 - - - 1 0.005 -
UMDA 200 100 - - - - -
PBIL 40 15 0.2 - - - -

DEUMd 100 20 - 6 - - -

For the GA, truncation selection and uniform crossover
were used. The results in the form of RLD are shown in
Figure 2.

4.3 Checkerboard problem
In Checkerboard problem [2, 11], a s × s grid is given

where each grid can take value 0 or 1. The goal is to cre-
ate a checkerboard pattern of 0’s and 1’s on the grid. i.e.
each grid with a value 1 should be surrounded in all four
basic directions by a value of 0, and vice versa. The fitness
function is the number of bits with the correct neighbours.
Let, x = [xij ]i,j=1,...s be the grid and δ(a, b) be the Kro-
necker delta function. Then the checkerboard function can
be written as:

Fcb(x) = 4(s− 2)2 −
s−1∑
i=2

s−1∑
j=2

{δ(xij , xi−1,j)+

δ(xij , xi+1,j) + δ(xij , xi,j−1) + δ(xij , xi,j+1)}

We follow the approach taken by [11, 5] and use s = 10
so the dimension is 100. The optimum fitness in this case
will be 256. Each algorithm was run for total of 1000 runs.
The parameter setups for each of the algorithm are shown
in Table 3:

Table 3: Parameter setup for CheckerBoard

PS SS LR CR CP MP EL

GA 1024 - - - 0.6 0.01 2
UMDA 1024 500 - - - - -
PBIL 100 10 0.01 - - - -

DEUMd 100 10 - 0.4 - - -

For the GA, truncation selection and onepoint crossover
were used. The results in the form of RLD are shown in
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Figure 3: RLD for CheckerBoard

Figure 3. As the percentage of successful runs was low, the
mean and standard deviation for fitness and the number of
evaluation are also shown, in Table 4.

Table 4: mean ± stdev of fitness and number of fit-
ness evaluation for each algorithm on Checker board
problem

GA UMDA PBIL DEUMd

254.68 ± 233.79 ± 243.5 ± 254.1 ±
(4.39) (9.2) (8.7) (5.17)

427702.2 ± 50228.2 ± 191476.8 ± 33994 ±
(1098959.3) (9127) (37866.95) (13966.75)

4.4 Schaffer F6 function
The Schaffer f6 function, described in [4], is an interesting

function for optimization that has been frequently used to
evaluate the performance of GAs. A simplified version of it
is presented below:

F6(x) = 1 +

(
cos(x)

1 + 0.001x2

)

where −300 ≤ x ≤ 300.

An interesting feature of this function is that it has many
local optima, but a single global optimal solution. So a hill-
climbing algorithm will rapidly become trapped in one of the
local optima. The optimal solution is f(x) = 2 when x =
0. We performed experiments with a 20-bit representation
of the f6 function. Within the limits of representational
accuracy, the termination criterion was effectively F6(x) >
1.99999988079071. Each algorithm was run for total of 1000
runs. The parameter setups are shown in Table 5:

Table 5: Parameter setup for F6 function

PS SS LR CR CP MP EL

GA 200 - - - 1 0.01 2
UMDA 400 120 - - - - -
PBIL 160 2 0.15 - - - -

DEUMd 200 2 - 8 - - -

For the GA, truncation selection and uniform crossover
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Figure 4: RLD for F6 function

were used. The experimental results in the form of RLD are
shown in Figure 4.

4.5 Equal products function
This problem is presented in [2, 5]. Given a set of n ran-

dom real numbers {a1, a2, ..., an} from an interval [0, k], a
subset of them is selected. The aim of the problem is to min-
imise the difference between the products of the selected and
unselected numbers. This can be written as:

Fep(x) =

∣∣∣∣∣
n∏

i=1

h(xi, ai)−
n∏

i=1

h(1− xi, ai)

∣∣∣∣∣
where,

h(x, a) =

{
1 if x = 0
a if x = 1

The optimum value is unknown as the real numbers ai

are generated randomly. However the optimum should be
close to zero. We take the problem dimension (chromosome
length) to be 50. Following [5], the random numbers are
taken from the interval [0,4]. Each algorithm was run for
total of 100 runs (each time with a random instance of a).
The parameter setups for each of the algorithm are shown
in Table 6:

Table 6: Parameter setup for Equal products

PS SS LR CR CP MP EL

GA 500 - - - 0.6 0.01 100
UMDA 500 250 - - - - 100
PBIL 500 250 0.5 - - - 100

DEUMd 1000 12 - 0.01 - - 1

Table 7: mean ± stdev of fitness and number of
fitness evaluation for each algorithm on Equal prod-
ucts problem

GA UMDA PBIL DEUMd

211.59 ± 5.03 ± 9.35 ± 2.14 ±
(1058.47) (18.29) (43.36) (6.56)
1000000 ± 1000000 ± 1000000 ± 1000000 ±

(0) (0) (0) (0)
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For the GA, truncation selection and uniform crossover
were used. Since, the optimum for this problem was not
known and was different for each instances of the problem,
the RLD could not be shown. Results are shown in Table 7.

4.6 Colville function
This is a minimization problem [5]. The function can be

defined as

Fc(x) = 100(x2−x2
1)

2+(1−x1)
2+90(x4−x2

3)
2+(1−x3)

2+

10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1)

where, −10 ≤ xi ≥ 10.

We have taken the chromosome length to be 60. The
optimum value for Fc is 0. 100 independent runs of each
algorithm was executed for this problem. The parameter
setups for each of the algorithm are shown in Table 8:

Table 8: Parameter setup for Colville

PS SS LR CR CP MP EL

GA 500 - - - 0.8 0.01 -
UMDA 1024 512 - - - - -
PBIL 500 1 0.005 - - - -

DEUMd 1000 1 - 0.01 - - -

For the GA, tournament selection and onepoint crossover
were used. The table below (Table 9) shows the mean ±
standard deviation for fitness and number of evaluation for
each of the algorithm.

Table 9: mean ± stdev of fitness and number of fit-
ness evaluation for each algorithm on Colville prob-
lem

GA UMDA PBIL DEUMd

0.61 ± 40.62 ± 2.69 ± 0.61 ±
(1.02) (102.26) (2.54) (0.77)

1000000 ± 62914.56 ± 1000000 ± 1000000 ±
(0) (6394.58) (0) (0)

4.7 SixPeaks function
The SixPeaks function [2, 11] can be mathematically de-

fined as

Fsp(x, t) =

max{tail(0, x), head(1, x), tail(1, x), head(0, x)}+R(x, t)

where,

tail(b, x) = number of tailing b′s in x

head(b, x) = number of leading b′s in x

R(x, t) =




n if tail(0, x) > t and head(1, x) > t or
tail(1, x) > t and head(0, x) > t

0 otherwise

The goal is to maximise the function. This function has 4
global optima which are isolated and therefore are difficult to
find. It also has two local optima which are easy to get and
therefore the search algorithms tends to converge on local
optima. We have taken the dimension to be 100 and t to be
30, thus the optimum fitness value is 169. Each algorithm
was run for total of 100 runs. The parameter setups for each
of the algorithm are shown in Table 10:

Table 10: Parameter setup for SixPeakes

PS SS LR CR CP MP EL

GA 50 - - - 0.6 0.01 2
UMDA 1024 512 - - - - -
PBIL 100 30 0.1 - - - -

DEUMd 40 4 - 0.3 - - 2

For the GA, truncation selection and uniform crossover
were used. As expected the univariate EDAs were not able
to find the global optima as they were deceived towards the
local optima. This result applies to DEUMd as well. Mean±
standard deviation of fitness value and number of evaluation
for each algorithm are shown in Table 11.

Table 11: mean ± stdev of fitness and number of
fitness evaluation for each algorithm on SixPeaks
problem

GA UMDA PBIL DEUMd

99.1 ± 98.58 ± 99.81 ± 100 ±
(9) (3.37) (1.06) (0)

49506 ± 121333.76 ± 58210 ± 26539 ±
(4940) (14313.44) (3659.15) (1096.45)

4.8 Trap function of order 5
A Trap function of order k [19] can be defined as

Ftrap,k(x) =

n
k∑

i=1

trapk(xbi,1 + ...+ xbi,k)

Each block (xbi,1 + ...+xbi,k) gives a fitness which can be
calculated through general trap function of order k

trapk(u) =

{
fhigh, if u = k

flow − u flow
k−1

, otherwise

Here, u is the number of ones in the input block of k bits.
The trap function of order 5 is an instance of the general
trap function where k = 5, fhigh = 5 and flow = 4. The
important feature of a trap function is that the block of
bits with u < k has decreasing fitness as u increases and so
misleads the algorithm away from the global optimum. We
take the problem dimension to be 60. Each algorithm was
run for total of 1000 runs. The parameter setups for each of
the algorithms are shown in Table 12:
For the GA, tournament selection and onepoint crossover

were used. The results in the form of RLD are shown in
Figure 5.
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Table 12: Parameter setup for trap5

PS SS LR CR CP MP EL

GA 1500 - - - 1 0.01 2
UMDA 30000 15000 - - - - -
PBIL 30000 1 0.1 - - - -

DEUMd 2000 20 - 0.1 - - 2
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Figure 5: RLD for Trap5

5. ANALYSIS OF RESULTS
Our experimental result show that, DEUMd gives satis-

factory results for most of the problems that we have tested
and fails where we would expect it to. We perform a sta-
tistical analyse on the significance of the results presented
above by using a t-test.
For the univariate problems(such as onemax) and also

for problems with low order of dependency between vari-
ables (such as plateau and checker board) the performance
of DEUMd (in terms of number of fitness evaluations taken
to terminate) was significantly better than that of other uni-
variate EDAs and also of the GAs tested. This can be veri-
fied from the t-test comparison (on number of fitness evalu-
ations) shown in the Table 13. Here, the p-values are shown
for each comparison on each problem. All p-values are <<
0.05. This indicates that the difference in algorithms’ per-
formance originates from their respective effectiveness rather
than from random noise.

Table 13: Results of the t-test comparison of number
of fitness evaluation on problems with lower order
dependency

DEUMd DEUMd DEUMd

vs. PBIL vs. UMDA vs. GA

OneMax 0.000 0.000 0.000
Plateau 0.000 0.000 0.000

Checkerboard 0.000 0.000 0.000

For the problems with higher order dependency (such as
SixPeaks and Trap of order 5), DEUMd, as with other uni-
variate EDAs was deceived by the structure of fitness land-
scape. This can be clearly seen from the Table 11 for Six-
Peaks and Figure 5 for Trap function. For the SixPeaks
function, none of the algorithm could find optimum solu-
tion. For the trap function, UMDA and PBIL could not
find the optimum, even using a population size of 30000.

However, a simple GA with one-point crossover could find
the solution after an average of 62000 fitness evaluations.
Interestingly, DEUMd with population size of 2000 could
also find the solution, however, with a very large average
fitness evaluation, 868000. It shows that, although DEUMd

is misled by trap function, by slowing the cooling rate and
choosing the correct population size, it still could overcome
a trap of order 5. Because of the low quality of results, the
t-test was not applied to test the significance.
For those problems where the optimum was not known

or was very hard to get (Colville and Equal products), the
performance of DEUMd was comparable to that of GA and
other univariate EDAs and was better in some cases (see
Table 7 and 9). These results can be verified from the t-test
comparison (on quality of fitness) shown in Table 14. Here,
the p-values are shown for each comparison on each prob-
lem. Although the mean fitness for the DEUMd was better
than that for rest of the algorithms on the Equal products
function, the p-values shows that this result is not signif-
icant in comparison to PBIL and UMDA (as p-values are
> 0.05), but is significant in comparison to the GA. Simi-
larly, for Colville function, the results for DEUMd are not
significant in comparison to GA but are highly significant in
comparison to PBIL and UMDA.

Table 14: Results of the t-test comparison of quality
of fitness for Colville and Equal products function

DEUMd DEUMd DEUMd

vs. PBIL vs. UMDA vs. GA

Equal products 0.103 0.139 0.05
Colville 0.000 0.00016 0.974

6. CONCLUSION
The aim of this paper was to empirically explore the cost

and benefit of applying MRF models used by DEUMd over
the marginal probability model used by other univariate
EDAs. We have presented an empirical analysis on the per-
formance of DEUMd on a range of optimization problems
compared with the performance of other univariate EDAs
and GAs.
The computational cost of Estimation of Distribution us-

ing MRF model is of polynomial complexity in comparison
to the linear complexity of other univariate EDAs. The rea-
son behind such a high computational cost is mainly because
of the SVD technique used to make the maximum likelihood
estimation of α (computational cost of other techniques may
vary and are most likely to be cheaper). Assuming N = n,
computational complexity to compute SVD is O(n3) (For
N < n, it is O(n2N) and for N > n, it is O(nN2)) [25, 7],
whereas computational complexity to compute the univari-
ate marginal frequency is O(nN). However, our experiments
shows that there is a case to be made for a more sophisti-
cated estimation of distribution in certain circumstances.
1. DEUMd can significantly reduce the number of fitness

evaluations required to solve a problem. This will be of
particular benefit when fitness evaluation is costly and can
be traded off against the computational cost of estimating
the distribution.
2. On the problems where only the near optimum solu-

tions could be found, DEUMd outperformed the other EDAs
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on quality of solution, often significantly. This suggests that
DEUMd should be tried on problems where the benefit of in-
creased solution quality is likely to outweigh computational
cost.
The advantage of DEUMd is that the maximum likelihood

estimation used is more sensitive to the distribution than
the simpler histogramming method used in other univariate
EDAs. Active research is under way to extend this approach
to multivariate EDAs. The success of multivariate EDAs on
problems with higher order difficulty suggests that further
benefits can be gained in this area.
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experimental investigation of estimation of
distribution algorithms. In Optimization by Building
and Using Probabilistic Models (OBUPM-2004).

[16] H. Mühlenbein and T. Mahnig. FDA - A scalable
evolutionary algorithm for the optimization of
additively decomposed functions. Evolutionary
Computation, 7(4):353–376, 1999.

[17] H. Mühlenbein and G. Paaß. From recombination of
genes to the estimation of distributions: I. binary
parameters. In H.-M. Voigt, W. Ebeling,
I. Rechenberg, and H.-P. Schwefel, editors, Parallel
Problem Solving from Nature – PPSN IV, pages
178–187, Berlin, 1996. Springer.

[18] I. Murray and Z. Ghahramani. Bayesian Learning in
Undirected Graphical Models: Approximate MCMC
algorithms. In Twentieth Conference on Uncertainty
in Artificial Intelligence (UAI 2004), Banff, Canada,
8-11 July 2004.

[19] M. Pelikan. Bayesian optimization algorithm: From
single level to hierarchy. PhD thesis, University of
Illinois at Urbana-Champaign, Urbana, IL, 2002. Also
IlliGAL Report No. 2002023.

[20] M. Pelikan and D. E. Goldberg. Hierarchical BOA
solves Ising spin glasses and MAXSAT. Proceedings of
the Genetic and Evolutionary Computation
Conference (GECCO-2003), pages 1271–1282, 2003.
Also IlliGAL Report No. 2003001.

[21] M. Pelikan, D. E. Goldberg, and F. Lobo. A survey of
optimization by building and using probabilistic
models. Technical Report 99018, Illinois Genetic
Algorithms Lab, UIUC, Urbana, IL, 1999.

[22] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press,
Cambridge, UK, 2nd edition, 1993.

[23] S. Shakya, J. McCall, and D. Brown. Estimating the
distribution in an EDA. In B. Ribeiro, R. F.
Albrechet, A. Dobnikar, D. W. Pearson, and N. C.
Steele, editors, In proceedings of the International
Conference on Adaptive and Natural computiNG
Algorithms (ICANNGA 2005), pages 202–205,
Coimbra, Portugal, 2005. Springer-Verlag, Wien.

[24] S. K. Shakya, J. A. W. McCall, and D. F. Brown.
Updating the probability vector using MRF technique
for a Univariate EDA. In E. Onaindia and S. Staab,
editors, Proceedings of the Second Starting AI
Researchers’ Symposium, pages 15–25, Valencia,
Spain, 2004. IOS press.

[25] R. Suda and S. Kuriyama. Another preprocessing
algorithm for generalized one-dimensional fast
multipole method. Journal of Computational Physics,
195:790–803, 2004.

734


